

PHP

OpenKnowTech & CC ICT-SUD

An introduction to the language (PHP 5)... in fact
just the theory needed to fully understand the

presented code examples.

PHP vs others
● Cons:

– inconsistencies in naming and syntax

– not a pure object oriented language

● Pros:
– much popular, supported by many ISPs

– web oriented and good for database access

– backward compatibility assured

– script language but quite fast, dynamic
– completely open source, easily extendable in C

file:///home/ant/SLIDE/

PHP Manual

● It is the official, authoritative and most
complete documentation and it's available in
both online and downloadable versions

● How to get help on a particular control
structure, feature, function, etc:
http://www.php.net/SEARCHKEY

● More about the PHP site shortcuts at:

http://www.php.net/urlhowto.php

http://www.php.net/SEARCHKEY
http://www.php.net/urlhowto.php
file:///home/ant/SLIDE/
file:///home/ant/SLIDE/

PEAR
● PEAR (PHP Extension and Application

Repository) is a framework and distribution
system for reusable PHP components

● Provides a structured library of code usually in
an OO style and a foundation for developing
new modules

● Promotes a standard coding style
● Takes care of distributing and managing code

packages through a package manager

http://pear.php.net/manual/en/standards.php
file:///home/ant/SLIDE/

Identifier names
● Anything that goes into the global namespace

should be prefixed or suffixed with an
uncommon 3-4 letter word. E.g.:

– MyPx_someFunc()

– Foo_Date

– ALIB_CONSTANT_VAL

– $asdf_dbh

● For more info see Userland naming guide
● As of PHP 5.3.0 namespaces are available.

http://www.php.net/manual/en/userlandnaming.php
http://www.php.net/manual/en/language.namespaces.php
file:///home/ant/SLIDE/
file:///home/ant/SLIDE/

String literals

● Single quoted:
– to specify a literal single quote, escape it: \'

– to specify a literal backslash before a single
quote, or at the end of the string, double it: \\

– no variables and escape sequences will be
expanded, thus are faster

● Double quoted:
– Escape sequences are interpreted. The most

common are: \n \r \t \\ \$ \”

– Variable names will be expanded

http://www.php.net/manual/en/language.types.string.php#language.types.string.syntax.double
file:///home/ant/SLIDE/
file:///home/ant/SLIDE/

Cookies
● Mechanism for storing data in the remote

browser in order to track or identify users
● Sessions usually use cookies to store the

unique session id on the user side, because
they are safer and more efficient than URL
propagation

● Storing a username in a cookie is insecure
bool setcookie (string $name [, string $value [, int $expire = 0 [,
string $path [, string $domain [, bool $secure = false [, bool $httponly =
false]]]]]])

file:///home/ant/SLIDE/
file:///home/ant/SLIDE/

Session Handling
● (Optional) You can set session parameters

only before session_start():

session_name('MYAPP');

session_id('global');
● session_start();
● After session_start() you can get current

session name/id:

session_name(); by default returns PHPSESSID

session_id(); e.g.returns etgk2s3ccjd77nbkca982o7dr1

file:///home/ant/SLIDE/

Session Variables
● write.php

<?php
session_start(); # mandatory
$_SESSION['counter'] = 1;
?>

● read.php (run it more than once)

<?php
session_start(); # mandatory
it displays 1 at the 1th run, 2 at the 2nd, etc...
echo $_SESSION['counter']++;
?>

● Check for existence: if (isset($_SESSION['counter']))

● Unregister: unset($_SESSION['counter']);

file:///home/ant/SLIDE/

Login and redirects

<?php

Code for Logging a User.

Filter and validate username and password
if (successful login) {
 # Setting Session.
 session_start();
 $_SESSION['user'] = user name;

 # Redirecting to the logged page.
 $host = $_SERVER['HTTP_HOST'];
 $uri = rtrim(dirname($_SERVER['PHP_SELF']), '/\\');
 header('Location: http://$host$uri/index.php');
 exit;
} else {
 # Wrong username or Password. Show error here.
}

?>

Custom pages

<?php

Code for differentiating Guest and Logged members.

session_start();

if (isset($_SESSION['user'])) {
 # Code for Logged members.

 # Identifying the user.
 $user = $_SESSION['user'];

 # Information for the user.
} else {
 # Code to show Guests.
}

?>

Logout
<?php

session_start();

if (isset($_SESSION['user'])) {
 # Unset all of the session variables.
 $_SESSION = array();

 /* Also delete the session cookie.
 This assumes sessions use cookies. */

 $params = session_get_cookie_params();
 setcookie(session_name(), '', time() - 42000,
 $params['path'], $params['domain'],
 $params['secure'], $params['httponly']

);

 # Finally, destroy the session.
 session_destroy();

 # Redirect as in login.
} else {
 # Error: you must first log in.
}

?>

Classes and Objects:
con/destructors

● PHP5 has a full object model. Nothing to envy
Java/C++ for. Except nested and friend
classes, but we can live without them in PHP.

● Constructors:
– Called on each newly-created object. Initialize

the object as needed before use

– If the child class defines a con/destructor, the
parent con/destructor is not called implicitly;
if and where you want to call it use:
parent::__con/destruct(...) within the child
con/destructor

file:///home/ant/SLIDE/
file:///home/ant/SLIDE/

Inheritance

● Syntax for creating a subclass (same as
Java):

class mountainBike extends bicycle { … }

● Classes must be defined before they are used
● As Java there is no support for multiple

inheritance, you can use interfaces instead
and implement multiple interfaces in a class
via the implements keyword

● Any class that contains at least one abstract
method must also be abstract (as in Java)

Polymorphism
class Base {
 function method() { echo "base\n"; }
}

class Child1 extends Base {
 function method() { echo "child1\n"; }
}

class Child2 extends Base {
 function method() { echo "child2\n"; }
}

$base = new Base();
$base->method(); # base

$child1 = new Child1();
$child1->method(); # child1

$child2 = new Child2();
$child2->method(); # child2

Late Binding

interface Int {
 function behaviour();
}

class Base {
 function method() {
 $this->behaviour();
 }
}

class Sub extends Base implements Int {
 function behaviour() {
 echo 'Late binding works!';
 }
}

$sub = new Sub();
$sub->method(); # Late binding works!

Fail-safe late binding
interface Int {
 function behaviour();
}

class Base {
 function method() {
 $this->behaviour();
 }

 function behaviour() { }
}

class Sub1 extends Base implements Int {
 function behaviour() { }
}

class Sub2 extends Base {

}

$sub2 = new Sub2();
$sub2->behaviour();

Overloading methods?

class Overloading {
 function overloaded() {
 return "overloaded called\n";
 }

 function overloaded($arg) {
 echo "overloaded($arg) called\n";
 }
}

$o = new Overloading();
echo $o->overloaded();
$o->overloaded(1);

Would not compile: Fatal error: Cannot
redeclare Overloading::overloaded()

Trick to implement overloading
class Overloading {
 function __call($method, $args) {
 if ($method == 'overloaded') {
 if (count($args) == 0) {
 return $this->noArg();
 } elseif (count($args) == 1) {
 $this->oneArg($args[0]);
 } else {
 # Do nothing. You can also trigger an error here.
 return FALSE;
 }
 }
 }
 protected function noArg() { return "noArg called\n"; }
 protected function oneArg($arg) { echo "oneArg($arg) called\n"; }
}

$o = new Overloading();
echo $o->overloaded();
$o->overloaded(1);

file:///home/ant/SLIDE/

Getting the name of a class
● The __CLASS__ magic constant always contains the

class name that it is called in (i.e. it's in). In global
context, it's an empty string.

● The string get_class ([object $object]) function returns the
name of the class of the given object. When called in
a method:

– without any arguments (static and non-static
methods): same as __CLASS__ (both are
substituted at bytecode compile time)

– with $this argument (only for non-static methods):
the class of the object the method is called on

How to get the name of the class where a static
method call was made against? Use get_called_class().

Inspecting variables

PHP does not have an internal debugging
facility, but has four external debuggers.

● Dumps information about a variable:
void var_dump (mixed $expression [, mixed $expression [, $...]])

● Outputs or returns a parsable string
representation of a variable:
mixed var_export (mixed $expression [, bool $return = false])

● Prints human-readable information about a
variable:
mixed print_r (mixed $expression [, bool $return = false])

http://www.php.net/manual/en/debugger-about.php
http://www.php.net/manual/en/language.pseudo-types.php#language.types.mixed
http://www.php.net/manual/en/language.pseudo-types.php#language.types.mixed
http://www.php.net/manual/en/language.pseudo-types.php#language.types.mixed
http://www.php.net/manual/en/language.pseudo-types.php#language.types.mixed
http://www.php.net/manual/en/language.pseudo-types.php#language.types.mixed
http://www.php.net/manual/en/language.pseudo-types.php#language.types.mixed
file:///home/ant/SLIDE/
file:///home/ant/SLIDE/
file:///home/ant/SLIDE/
file:///home/ant/SLIDE/
file:///home/ant/SLIDE/
file:///home/ant/SLIDE/
file:///home/ant/SLIDE/
file:///home/ant/SLIDE/
file:///home/ant/SLIDE/
file:///home/ant/SLIDE/

Late Static Bindings

● TODO

The callback pseudo-type

● Example values:
'function_name', array($obj, 'methodName'),
array('ClassName', 'staticMethodName'),
array('ClassName::staticMethodName')

and closures...

● Make an array of strings all uppercase:
$array = array_map('strtoupper', $array);

● Sort an array by the length of its values:
function cmp($a, $b){
 return strlen($b) - strlen($a);
}

usort($array, 'cmp');

file:///home/ant/SLIDE/

Lambda Functions

string create_function (string $args , string $code)

Creates an anonymous function at runtime from
the parameters passed, and returns a unique
name for it (i.e. 'lambda_1') or FALSE on error.
Being a string, the return value can be used as a
callback.

usort($array,
create_function('$a,$b',

'return strlen($b) - strlen($a);'
)

);

Closures

function [&] ([formal parameters]) [use ($var1, $var2, &$refvar)] { ... }

usort($array, function($a, $b) {
 return strlen($b) - strlen($a);
});

TODO: example with “use”

file:///home/ant/SLIDE/
file:///home/ant/SLIDE/

Type Hinting

function test(MyClass $typehintexample = NULL) {}

function array_average(array $arr) { … }

function average($val) {

if (is_numeric($val)) return $val;

/* a warning will be issued if we get

here and $val isn't an array */

return array_sum($val) / count($val);

}

● If the type does not match a PHP Catchable
fatal error occurs (it's not an exception)

file:///home/ant/SLIDE/
file:///home/ant/SLIDE/

PHP Arrays
● A PHP array is a ordered map optimized for several

uses:
numerical (indexed), associative or mixed array -
multidimensional array - list (vector) - hash table –
dictionary – collection – stack – queue – tree – coffe
machine :-)

● Keys may only be integers or strings

● Values may be any value of any type, including other
arrays

● No fixed number of values, no single type!

● Can be created/modified with square bracket syntax.
A rich library of array functions is available.

file:///home/ant/SLIDE/
file:///home/ant/SLIDE/
file:///home/ant/SLIDE/

Kludges for constant arrays

● static $CONSTARRAY = array(...);

... Class::$CONSTARRAY ...
● static function CONSTARRAY() { return

array(...); }

... Class::CONSTARRAY() ...
● define('CONSTARRAY', serialize(array(...)));

... unserialize(CONSTARRAY) …

define('CONSTARRAY', 'return ' . var_export(array(
...), 1) . ';');

 ... eval(CONSTARRAY) ...

PHP Exception Handling

● Runtime exception handling in PHP resembles that
of Java, but somewhat simplified

● Unhandled exceptions are always forwarded;
catching and re-throwing them within a catch block is
allowed (as in Java). Only needed if you want to
change the exception object to forward up.

● There is no throws clause, that is there's only one
exception type: unchecked

● Exception class (PHP) =Throwable class (Java)

● PHP has no finally block – this is a hole in the
language

file:///home/ant/SLIDE/
file:///home/ant/SLIDE/
file:///home/ant/SLIDE/
file:///home/ant/SLIDE/

PDO: PHP Data Objects

● Provides a data-access abstraction layer not a
 database abstraction

● Bundled with PHP as of version 5.1 – current
stable version is 5.3.1

● Don't use PDO::exec and PDO::quote to build
SQL statement using string interpolation

● Use prepared statements with bound
parameters: faster and secure

PDO: prepared statements

$dbh = new PDO('mysql:dbname=testdb;host=localhost', 'user', 'pwd');

$sth = $dbh->prepare('... ? … ? …');

or - you cannot mix ? and :name in the same query:

$sth = $dbh->prepare('... :name … :othername …');

$sth->bindParam/Value(1, ...); $sth->bindParam(2, ...); or:

$sth->bindParam/Value(':name', ...); opt. add param type

$sth->execute();

shortcut for input only and all-strings parameters:

$sth->execute(array(..., ...)); or:

$sth->execute(array(':name' => ..., ':othername' => ...));

PDO: some param/value data types

bool PDOStatement::bindValue(mixed $parameter, mixed
$value [, int $data_type = PDO::PARAM_STR])

bool PDOStatement::bindParam(mixed $parameter,
mixed $value [, int $data_type = PDO::PARAM_STR [, int
$length]])

PDO::PARAM_BOOL boolean
PDO::PARAM_NULL NULL
PDO::PARAM_INT integer
PDO::PARAM_STR string (default)

PDO::PARAM_INPUT_OUTPUT OR-bitwise with one of the
above to bind and INOUT parameter (only useful with stored
procedures). A length must follow.

include/require quirks
● These statemens includes and evaluates the

specified file. Slower _once versions are available.

● Use require if you want a missing file to halt
processing of the page; include if you want your
script to continue regardless

● Path defined: absolute, relative: if an included script
contains another include with a relative path, note
this is only based off of the first script current working
directory, and not that of the included script

● No path is given: include_path will be used

file:///home/ant/SLIDE/

Autoloading Classes

function __autoload($class_name) {
 require_once $class_name . '.php';
}

● The autoload function must be defined in main
scope in "\" namespace.

● To keep things simple, it is advisable to keep
source files in the filesystem in a directory tree
correspondent to that of namespaces.

PHP Namespaces
● Declaration: namespace MyWebapp; (that is \MyWebapp)

● Namespaces can nest into others:

namespace CompanyName\ProjectName\Library\Database;

● Before, to avoid name clashes, long prefixes were used:
CompanyName_ProjectName_Library_Database_ClassName

● Namespace aliasing allows to shorten long qualified names:

use CompanyName\ProjectName\Library\Database [as
Database];

$obj = new Database\ClassName();

● Single classes can also be aliased (not constants or functions):

use CompanyName\ProjectName\Library\Database\ClassName as C;

$obj = new C();

Three types of names

● Unqualified:
Database (namespace)

ClassName (class)

● Qualified:
Library\Database (namespace)

Database\Classname (class)

● Fully-qualified:
\CompanyName\ProjectName\Library\Database (namespace)

\CompanyName\ProjectName\Library\Database\ClassName
(class)

Data Filtering

● Validation: check if the data meets certain
qualifications: BOOLEAN, EMAIL, FLOAT,
INT, IP, REGEXP, URL

● Sanitization: alter the data, e.g. by removing
undesired characters, applying URL-encoding,
adding slashes, stripping tags, HTML-
escaping

mixed filter_input (int $type , string $variable_name [, int $filter =
FILTER_DEFAULT [, mixed $options]])

mixed filter_input_array (int $type [, mixed $definition])

http://www.php.net/manual/en/language.pseudo-types.php#language.types.mixed
http://www.php.net/manual/en/language.pseudo-types.php#language.types.mixed
http://www.php.net/manual/en/language.pseudo-types.php#language.types.mixed
http://www.php.net/manual/en/language.pseudo-types.php#language.types.mixed
file:///home/ant/SLIDE/
file:///home/ant/SLIDE/
file:///home/ant/SLIDE/
file:///home/ant/SLIDE/

 1

PHP

OpenKnowTech & CC ICT-SUD

An introduction to the language (PHP 5)... in fact
just the theory needed to fully understand the

presented code examples.

PHP: Hypertext Preprocessor

 2

PHP vs others
● Cons:

– inconsistencies in naming and syntax
– not a pure object oriented language

● Pros:
– much popular, supported by many ISPs
– web oriented and good for database access

– backward compatibility assured
– script language but quite fast, dynamic
– completely open source, easily extendable in C

The cons are mainly due to the evolving nature of the language
and its history: PHP3 was only procedural. PHP4 added a
rudimentary object model. We have to wait for PHP5 for PHP to
become a real object-oriented language, but not pure. You can
still use procedural programming or mix it with OOP.

PHP syntax is not uniform and has been influenced by various
languages as Perl, C, C++.

PHP is easy to learn and use than most other languages. Allows
rapid development and prototyping.

PHP3 code still works with PHP5, only a few minor tweaks may be
required.

Normally PHP is parsed and compiled at run time, i.e. every time a
user accesses the webpage, not at the page's first view or at
design time. After that it runs in a virtual machine (Zend Engine),
as Java. If more speed is needed you can: use a php compiler to
store script in binary format and/or a bytecode optimizer to
reduce execution time and/or an opcode cache (OPC) to cache
a compiled form of a PHP script in shared memory (PHP6 will
have OPC built-in). Code scramblers (obfuscators) are also
available, but a good license/lawer or not giving out the code
and instead run a hosted service may work better :-)

Java is not entirely open source, some parts are still untouchable
and Sun decide what goes into Java, not the community.

 3

PHP Manual

● It is the official, authoritative and most
complete documentation and it's available in
both online and downloadable versions

● How to get help on a particular control
structure, feature, function, etc:
http://www.php.net/SEARCHKEY

● More about the PHP site shortcuts at:

http://www.php.net/urlhowto.php

 4

PEAR
● PEAR (PHP Extension and Application

Repository) is a framework and distribution
system for reusable PHP components

● Provides a structured library of code usually in
an OO style and a foundation for developing
new modules

● Promotes a standard coding style
● Takes care of distributing and managing code

packages through a package manager

To keep things simple and practice the standard PHP
functions before all, we won't use PEAR for our
project here.

 5

Identifier names
● Anything that goes into the global namespace

should be prefixed or suffixed with an
uncommon 3-4 letter word. E.g.:

– MyPx_someFunc()

– Foo_Date

– ALIB_CONSTANT_VAL
– $asdf_dbh

● For more info see Userland naming guide
● As of PHP 5.3.0 namespaces are available.

It doesn't matter what convention you choose for your
identifier: the most important thing is to be
consistent with it.

Four popular conventions for names of functions,
classes, variables, constants are:

 underscore_between_words, alltogetherwords,
 CamelCase, ALL_UPPERCASE
To avoid name clashing between code you create

and internal PHP or thirdy part library identifiers
now and in the future, prefixes/suffixes or
namespaces should be used.

We will use namespaces because prexifing/suffixing
makes names longer. Namespace in PHP are
defined and used in a similar fashion as paths to
directory in a filesystem (they can be nested,
absolute, relative, there is a current namespace
concept akin to current directory).

 6

String literals

● Single quoted:
– to specify a literal single quote, escape it: \'
– to specify a literal backslash before a single

quote, or at the end of the string, double it: \\

– no variables and escape sequences will be
expanded, thus are faster

● Double quoted:
– Escape sequences are interpreted. The most

common are: \n \r \t \\ \$ \”
– Variable names will be expanded

In scripting languages variables are preceded by a dollar sign to
the purpose of allowing a simple syntax of interpolation of
variables into strings. Some languages (e.g. BOO of .NET) allow
interpolating entire expressions into strings. PHP only parses
variables within strings (scalar variable values, array values or
object properties). E.g.:

“I ate $fruits[banana] bananas in all my life.”

Outside a string, the key must be quoted otherwise will be
interpreted as a constant (and if undefined, PHP will issue an
error notice):

echo $fruits['banana'];

At the moment PHP has partial UTF-8 support. Many string
functions regard a single character as a byte. PHP version 6 will
have full UTF-8 support. For historical reasons dots were used
for string concatenation and thus cannot be used for object
navigation, for that PHP uses ->

 7

Cookies
● Mechanism for storing data in the remote

browser in order to track or identify users
● Sessions usually use cookies to store the

unique session id on the user side, because
they are safer and more efficient than URL
propagation

● Storing a username in a cookie is insecure
bool setcookie (string $name [, string $value [, int $expire = 0 [,
string $path [, string $domain [, bool $secure = false [, bool $httponly =
false]]]]]])

PHP sessions also supports url id propagation. Cookies are
a more efficient and safer way, since they are temporary,
don't show up in your browsing history, and can't
accidentally be mailed to someone with the url, no need
to append the session id to every link and form
submission etc.

A cookie usually stores only the session id, all the session
data are stored on the server. Much safer, you can store
as much data as you like and data do not have to be
retrasmitted between client and server on each request.

Because PHP abstracts the storage method from the
programmatic interface to session management,
different storage strategies can be used (files, memory,
tables in a database, etc.)

Implementing sessions through cookies by storing the user
id (aka username or login) in a cookie would be insecure
because everyone who knows someone else's username
will be able to act as that user or even logging him/her
out. This is why hard-to-guess 26-letters long identifier
are used for session values in PHP by default.

 8

Session Handling
● (Optional) You can set session parameters

only before session_start():

session_name('MYAPP');

session_id('global');
● session_start();
● After session_start() you can get current

session name/id:

session_name(); by default returns PHPSESSID

session_id(); e.g.returns etgk2s3ccjd77nbkca982o7dr1

A session has a name (used as a cookie name) and an id
(cookie value). By default the name is PHPSESSID.
Names can contain only alphanumeric characters and
cannot consist of digits only; they should be short and
descriptive (i.e. for users with enabled cookie warnings).

Normally session ids (SIDs) are uniquely randomly
generated for private sessions (private per browser
instance i.e. session cookie); e.g). Setting it to a constant
allows for global sessions (global to all clients) Some
session handlers place syntax restrictions on SID, e.g. for
the file session handler they must match the following
regex: [-a-zA-Z0-9,]+

session_start() creates a session or resumes the current
one (recreates the prior saved environment) if a specific
session ID has been sent with the request by the browser
(through a cookie or the get/post method). Normally
session are not auto-started to avoid overhead for the
scripts that do not need them.

 9

Session Variables
● write.php

<?php
session_start(); # mandatory
$_SESSION['counter'] = 1;
?>

● read.php (run it more than once)

<?php
session_start(); # mandatory
it displays 1 at the 1th run, 2 at the 2nd, etc...
echo $_SESSION['counter']++;
?>

● Check for existence: if (isset($_SESSION['counter']))

● Unregister: unset($_SESSION['counter']);

To register a variable with the current session just
add a new key to the $_SESSION superglobal
array. These keys cannot start with a number and
must start with a letter or _, as any other PHP
variable name.

All registered variables are serialized after the
request finishes.

Resource variables (e.g. external resource handlers
as db connections, opened files) are garbage
collected during execution and automatically
destroyed at the of the request. Thus cannot be
serialized or registered with a session. They must
be re-created by each script that needs them.

 10

Login and redirects

<?php

Code for Logging a User.

Filter and validate username and password
if (successful login) {
 # Setting Session.
 session_start();
 $_SESSION['user'] = user name;

 # Redirecting to the logged page.
 $host = $_SERVER['HTTP_HOST'];
 $uri = rtrim(dirname($_SERVER['PHP_SELF']), '/\\');
 header('Location: http://$host$uri/index.php');
 exit;
} else {
 # Wrong username or Password. Show error here.
}

?>

Here is how to create logged sessions.

There should be no output sent to the browser before
header(), not even spaces or blank lines.

HTTP/1.1 requires an absolute URL as argument to
Location: including the scheme, hostname and
absolute path, but some clients accept relative
URLs.

 11

Custom pages

<?php

Code for differentiating Guest and Logged members.

session_start();

if (isset($_SESSION['user'])) {
 # Code for Logged members.

 # Identifying the user.
 $user = $_SESSION['user'];

 # Information for the user.
} else {
 # Code to show Guests.
}

?>

 12

Logout
<?php

session_start();

if (isset($_SESSION['user'])) {
 # Unset all of the session variables.
 $_SESSION = array();

 /* Also delete the session cookie.
 This assumes sessions use cookies. */

 $params = session_get_cookie_params();
 setcookie(session_name(), '', time() - 42000,
 $params['path'], $params['domain'],
 $params['secure'], $params['httponly']

);

 # Finally, destroy the session.
 session_destroy();

 # Redirect as in login.
} else {
 # Error: you must first log in.
}

?>

session_destroy() destroys all of the data associated
with the current session in the session storage. It
does not unset any of the global variables
associated with the session, or unset the session
cookie. The first will be freed when the script
terminates. For the last, if a cookie is used to
propagate the session id (default behaviour), you
need to delete the client-side session cookie by re-
sending it with the same parameters but an empty
value and a past expiration date.

Do not forget to initialize the session you want to
destroy prior to destroying it by using
session_start('NAME') where 'NAME' is the session
name if different from default.

Note no output must be written before calling
setcookie otherwise it will fail.

 13

Classes and Objects:
con/destructors

● PHP5 has a full object model. Nothing to envy
Java/C++ for. Except nested and friend
classes, but we can live without them in PHP.

● Constructors:
– Called on each newly-created object. Initialize

the object as needed before use

– If the child class defines a con/destructor, the
parent con/destructor is not called implicitly;
if and where you want to call it use:
parent::__con/destruct(...) within the child
con/destructor

Differences with Java: if there is no explicit call to a constructor in
the first line of constructor, the compiler will insert a call to the
parameterless constructor of the parent, which must be defined
otherwise a compilation error is produced. In PHP constructors
are never called implicitly.

PHP does not let you define a class within another class as in C+
+/Java. In Java a non-static nested classes (“inner classes”) is
associated with an instance of its enclosing class and has access
to other members of the enclosing class, even if they are
declared private. This only provides a method to partition an
object into more pieces enhancing encapsulation. Cons: these
pieces are not reusable outside the objects; inner classes are
unnecessarily verbose; the more class you load the more
memory you need and application startup increases.
Java needs inner classes mainly because the event-handling
mechanism of the GUI uses them. PHP has callbacks, lambda
functions and closures which are good substitutes for
anonymous inner functions used as event handlers.

In Java too there is no 'friend' concept: you have to put your
“friends” in the same package if you want a class to be able to
access protected methods of another class without extending it.
PHP does not provide visibility features for namespaces yet.

 14

Inheritance

● Syntax for creating a subclass (same as
Java):

class mountainBike extends bicycle { … }

● Classes must be defined before they are used
● As Java there is no support for multiple

inheritance, you can use interfaces instead
and implement multiple interfaces in a class
via the implements keyword

● Any class that contains at least one abstract
method must also be abstract (as in Java)

When you extend a class, the subclass inherits all of the public and
protected methods from the parent class. Unless a class
overrides those methods, they will retain their original
functionality. This is useful for defining and abstracting
functionality, and permits the implementation of additional
functionality in similar objects without the need to reimplement
all of the shared functionality.

PHP5 supports the concept of interfaces which you can use to
accomplish the same thing you would with multiple inheritance,
albeit in a more elegant and cleaner way. An interface imparts
no behaviour, only a set of rules, while a base class could
provide some default implementation.

Abstract classes act as a template for inheritance and cannot be
instantiated in their own right. Difference with interfaces: an
abstract class can have some non-abstract functions, while
interfaces must only have method's signatures, you cannot
define any implementation at the interface level.

Interfaces can only define methods and constants, no properties
(this is an implementation details left to the classes that the
implement that interface). A class cannot implement two
interfaces that share function names, since it would cause
ambiguity.

 15

Polymorphism
class Base {
 function method() { echo "base\n"; }
}

class Child1 extends Base {
 function method() { echo "child1\n"; }
}

class Child2 extends Base {
 function method() { echo "child2\n"; }
}

$base = new Base();
$base->method(); # base

$child1 = new Child1();
$child1->method(); # child1

$child2 = new Child2();
$child2->method(); # child2

polymorphism translates from Greek as many forms
(poly - many morph - forms).

Polymorphism in OOP means that a same method
can behave differently on different instances (of
different types) of an object. It allows us to organize
similar objects in a logical way such that calling
code does not have to worry about specific types;
rather, we code to an expected interface or base
class without regard to an object’s concrete class.
Our code is written to the lowest common
denominator. In this way we increase the clarity of
your code by encapsulating conditional behavior-–
behavior based on an object’s state-–within the
object itself, rather than handling it with code that,
for all intents and purposes, should not know
enough about the object to make any real decisions
on such matters.

Polymorphism is just overriding methods from a
subclass.

 16

Late Binding

interface Int {
 function behaviour();
}

class Base {
 function method() {
 $this->behaviour();
 }
}

class Sub extends Base implements Int {
 function behaviour() {
 echo 'Late binding works!';
 }
}

$sub = new Sub();
$sub->method(); # Late binding works!

Late (or dynamic) binding is referring to method and
properties in the base class that do not exist yet,
but are present in subclasses. In other words,
calling unique methods in children from the parent.

Latest versions of PHP5 support late binding
properly.

 17

Fail-safe late binding
interface Int {
 function behaviour();
}

class Base {
 function method() {
 $this->behaviour();
 }

 function behaviour() { }
}

class Sub1 extends Base implements Int {
 function behaviour() { }
}

class Sub2 extends Base {

}

$sub2 = new Sub2();
$sub2->behaviour();

Fail-safe version: if you do not define a method behaviour()
in child classes PHP won't throw a Fatal Error, because it
will inherit the default behaviour from the base class

If we try to call behaviour from our Sub2 class, it will fail
safely, and execute the default behaviour from the
method in our Base class.

 18

Overloading methods?

class Overloading {
 function overloaded() {
 return "overloaded called\n";
 }

 function overloaded($arg) {
 echo "overloaded($arg) called\n";
 }
}

$o = new Overloading();
echo $o->overloaded();
$o->overloaded(1);

Would not compile: Fatal error: Cannot
redeclare Overloading::overloaded()

Overriding: same method names with same
arguments and same return types associated in a
class and its subclass, but PHP does not enforce
the return types to be the same as in this traditional
definition.

Overloading - same method name with different
arguments may or may not be same return type
written in the same class itself.

In polymorphism, you have methods that behaves
differently depending on who is performing it,
method overloading is having one method that
behaves differently depending on the number of
arguments passed, or type.

 19

Trick to implement overloading
class Overloading {
 function __call($method, $args) {
 if ($method == 'overloaded') {
 if (count($args) == 0) {
 return $this->noArg();
 } elseif (count($args) == 1) {
 $this->oneArg($args[0]);
 } else {
 # Do nothing. You can also trigger an error here.
 return FALSE;
 }
 }
 }
 protected function noArg() { return "noArg called\n"; }
 protected function oneArg($arg) { echo "oneArg($arg) called\n"; }
}

$o = new Overloading();
echo $o->overloaded();
$o->overloaded(1);

To implement overload in PHP a trick using the _call
magic method is required (see example): this
method is triggered when invoking inaccessible
methods in an object context.

When an overloaded method is called, since it does
not exists, your __call function is called and
provided with method name, and arguments. You
can modify what you want to happen depending on
what is passed and what is called. You can also
check arguments types with is_array, is_numeric,
etc.

You can also do this with properties with
magic methods __get an __set.

 20

Getting the name of a class
● The __CLASS__ magic constant always contains the

class name that it is called in (i.e. it's in). In global
context, it's an empty string.

● The string get_class ([object $object]) function returns the
name of the class of the given object. When called in
a method:

– without any arguments (static and non-static
methods): same as __CLASS__ (both are
substituted at bytecode compile time)

– with $this argument (only for non-static methods):
the class of the object the method is called on

How to get the name of the class where a static
method call was made against? Use get_called_class().

A bit of Runtyme Type Information (RTTI). In PHP
get_class can only be applied to objects. E.g. a
warning will be issued if you try to get the class
name of an array or a string or call get_class
without object from outside a class. Inside a non-
static method get_class() can not be the same as
get_class($this), if inheritance is involved.

get_class(obj) is the same as
obj.getClass().getName() in Java. In Java getName
is a method of java.lang.Class that returns the fully
qualified name of the entity (class, interface, array
class, primitive type, or void).

How to find the actual calling class of a static
method? Don't use get_class(), use string
get_called_class (void) which uses Late
Static Binding to resolve the target class for a static
method call at runtime rather than when it is
defined.

 21

Inspecting variables

PHP does not have an internal debugging
facility, but has four external debuggers.

● Dumps information about a variable:
void var_dump (mixed $expression [, mixed $expression [, $...]])

● Outputs or returns a parsable string
representation of a variable:
mixed var_export (mixed $expression [, bool $return = false])

● Prints human-readable information about a
variable:
mixed print_r (mixed $expression [, bool $return = false])

var_dump: this function displays structured
information about one or more expressions
that includes its type and value. Arrays and
objects are explored recursively with values
indented to show structure.

var_export: similar to var_dump() with one
exception: the returned representation is
valid PHP code.

print_r(): displays information about a variable
in a way that's readable by humans.

print_r(), var_dump() and var_export() will also
show/return protected and private properties
of objects in PHP 5, not only public ones.
Static class members will not be shown.

 22

Late Static Bindings

● TODO

 23

The callback pseudo-type

● Example values:
'function_name', array($obj, 'methodName'),
array('ClassName', 'staticMethodName'),
array('ClassName::staticMethodName')

and closures...

● Make an array of strings all uppercase:
$array = array_map('strtoupper', $array);

● Sort an array by the length of its values:
function cmp($a, $b){
 return strlen($b) - strlen($a);
}

usort($array, 'cmp');

callback is not a distinct type of the language: it is represented by
other real types depending on the situation.

Some PHP library functions accept user-defined callback functions
as a parameter. A PHP function (either built-in or user-defined)
is passed by its name as a string. A method of an instantiated
object is passed as an array containing an object at index 0 and
the method name at index 1. Static class methods can also be
passed without instantiating an object of that class by passing
the class name instead of an object at index 0.

“I made an anagram machine and I have an array of positive

matches. The trouble is they are all in a different order, I want to

be able to sort the array so the longest array values appear first”

– from stackoverflow.com. The solution shown uses a usort()

(SORT with a User callback). As a side note usort() is an

unstable sort. That means may change the order of the elements

that compare equal.

 24

Lambda Functions

string create_function (string $args , string $code)

Creates an anonymous function at runtime from
the parameters passed, and returns a unique
name for it (i.e. 'lambda_1') or FALSE on error.
Being a string, the return value can be used as a
callback.

usort($array,
create_function('$a,$b',

'return strlen($b) - strlen($a);'
)

);

Inspired from functional languages as LISP, PHP
supports function types (aka first-class
functions), but only for functions with no name:
functions are objects that can be passed as a
parameter, returned from other functions, or
assigned into a variable. New functions can be
defined at runtime.

Lambda-style (anonymous) functions allow the
quick definition of throw-away functions that
are not used elsewhere. They are most useful
as callback functions. Advantages: increase
locality of definition and thus readability
Disadvantages: the function is compiled at run
time and not at compile time so opcode caches
can't cache the function.

 25

Closures

function [&] ([formal parameters]) [use ($var1, $var2, &$refvar)] { ... }

usort($array, function($a, $b) {
 return strlen($b) - strlen($a);
});

TODO: example with “use”

create_function does not create closures. It is merely a
convenience function that generates a unique name for a
regular function

PHP also supports closures, aka anonymous functions. They
make lambda functions even more useful: a closure is a
lambda function that may also inherit variables from the
parent scope. Any such variables must be declared in the
function header. The parent scope of a closure is the
function in which the closure was declared (not necessarily
the function it was called from). By default, all imported
variables are copied as values into the closure. This makes
it impossible for a closure to modify the variable in the parent
scope. By prepending an & in front of the variable name in
the use declaration, the variable is imported as a reference
instead. In that case, changes to the variable inside the
closure will affect the outside scope.

It is possible to also pass a closure to a callback parameter.

PHP automatically converts closure expressions into instances
of the Closure internal class which will be the type of the
variable you assign a closure to.

 26

Type Hinting

function test(MyClass $typehintexample = NULL) {}

function array_average(array $arr) { … }

function average($val) {

if (is_numeric($val)) return $val;

/* a warning will be issued if we get

here and $val isn't an array */

return array_sum($val) / count($val);

}

● If the type does not match a PHP Catchable
fatal error occurs (it's not an exception)

Unlike Java which is a strongly typed language, PHP is
basically an untyped language as most scripting
languages are. This typeless nature provides for the
flexibility needed most of the times. Though some type
checking is provided as an optional feature. So that you
can make code easier to read and less error prone
without too much runtime performance bottlenecks .

You can force function/method parameters to be objects (by
specifying the name of the class in the function prototype)
or arrays. However, if NULL is used as the default
parameter value, it will be allowed as an argument for any
later call.

Static type hints, e.g. with int and strings, aren't supported
yet. They will probably be in PHP 6.

You can mix type hinted code with the non-type hinted one.
A catchable fatal error is not an exception: it can be

handled traditionally with set_error_handler() or
converted in an exception with the help of the
ErrorException class.

 27

PHP Arrays
● A PHP array is a ordered map optimized for several

uses:
numerical (indexed), associative or mixed array -
multidimensional array - list (vector) - hash table –
dictionary – collection – stack – queue – tree – coffe
machine :-)

● Keys may only be integers or strings

● Values may be any value of any type, including other
arrays

● No fixed number of values, no single type!

● Can be created/modified with square bracket syntax.
A rich library of array functions is available.

A map is a type that associates values to keys.

PHP arrays are created by the array() language construct.
It takes as parameters any number of comma-
separated key => value pairs.

The indexed and associative array types are the
same type in PHP, which can both contain integer
and string indices.

It is common to use an array to hold one or more
key =>value pairs to set attribute values for an
object. a function, a method etc. This relieves the
programmer from having to remember the order
and default values of parameters. Associative
arrays used as parameter lists are inspired from
Tcl (Tool Command Language), the only good
general-purpose language with built-in named
parameters support.

 28

Kludges for constant arrays

● static $CONSTARRAY = array(...);

... Class::$CONSTARRAY ...
● static function CONSTARRAY() { return

array(...); }

... Class::CONSTARRAY() ...
● define('CONSTARRAY', serialize(array(...)));

... unserialize(CONSTARRAY) …

define('CONSTARRAY', 'return ' . var_export(array(
...), 1) . ';');

 ... eval(CONSTARRAY) ...

Unfortunately you can't define an array as a class or
global constant. Some sensible work-arounds are:

● define AND initialize a public static array variable
instead; however, you have no guarantee that it
will not be modified outside your class

● return it in a static method; client code will need to
save it to a variable before indexing

● serialize the array and define it as a constant string;
● ditto plus you need to unserialize before use:

var_export & eval can also be used. Definition
has to be made outside the class using the old
define() function, because the new keyword const
does not yet supports expressions.

 29

PHP Exception Handling

● Runtime exception handling in PHP resembles that
of Java, but somewhat simplified

● Unhandled exceptions are always forwarded;
catching and re-throwing them within a catch block is
allowed (as in Java). Only needed if you want to
change the exception object to forward up.

● There is no throws clause, that is there's only one
exception type: unchecked

● Exception class (PHP) =Throwable class (Java)

● PHP has no finally block – this is a hole in the
language

If an exception is not caught, a PHP Fatal Error will be
issued with an "Uncaught Exception ..." message and a
stack trace - that is the program terminates, as in Java,
but if a user-defined top-level exception handler function
has been defined with set_exception_handler() it will be
triggered instead. .

Internal PHP functions mainly use the traditional error-
management techniques (Error reporting), only modern
Object oriented extensions use exceptions. However,
errors can be simply translated to exceptions with the
help of an Exception subclass called ErrorException.

In PHP there is no “catch or specify requirement” as is
enforced in Java for checked exceptions: simply any
thrown exception will propagate up your stack until it is
either caught or runs out of stack. This is like declaring
all classes (or methods) in Java as "class ClassName
throws Exception". That is PHP will never force you to
catch exceptions by compile-time checks.

 30

PDO: PHP Data Objects

● Provides a data-access abstraction layer not a
 database abstraction

● Bundled with PHP as of version 5.1 – current
stable version is 5.3.1

● Don't use PDO::exec and PDO::quote to build
SQL statement using string interpolation

● Use prepared statements with bound
parameters: faster and secure

That means PDO does not rewrite SQL or emulate
missing features in a certain RDBMS
implementation. It is not a full abstraction layer:
regardless of which database you're using, you use
the same functions to issue queries and fetch data.
Each database driver that implements the PDO
interface can expose database-specific features as
regular extension functions.

Remember during PHP configuration we enabled
both the PDO extension and the specific PDO
driver for MySQL, which we will use here.

Prepared statements are more portable: PDO::quote
is not available for all drivers (notably
PDO_ODBC), immune to SQL injection, easier to
use – you don't need to escape/quote/format-check
any data and often much faster than interpolated
queries, as both the server and client side can
cache a compiled form of the query.

 31

PDO: prepared statements

$dbh = new PDO('mysql:dbname=testdb;host=localhost', 'user', 'pwd');

$sth = $dbh->prepare('... ? … ? …');

or - you cannot mix ? and :name in the same query:

$sth = $dbh->prepare('... :name … :othername …');

$sth->bindParam/Value(1, ...); $sth->bindParam(2, ...); or:

$sth->bindParam/Value(':name', ...); opt. add param type

$sth->execute();

shortcut for input only and all-strings parameters:

$sth->execute(array(..., ...)); or:

$sth->execute(array(':name' => ..., ':othername' => ...));

They can be thought of as a kind of compiled template for
the SQL that an application wants to run, that can be
customized using variable parameters.

named (:name) or question mark (?) parameter markers
will be substituted for real values when the statement is
executed

Any user input must be bound using parameters and must
not be included directly in the query.

You cannot bind multiple values to a single named
parameter in, for example, the IN() clause of an SQL
statement. Workaround: build a list of ? as IN(?,?,?,?)
using str_repeat().

If the DB server supports prepared statement,
PDO::prepare() will check the statement and returns
FALSE or emits and exception in case of syntax errors.

 32

PDO: some param/value data types

bool PDOStatement::bindValue(mixed $parameter, mixed
$value [, int $data_type = PDO::PARAM_STR])

bool PDOStatement::bindParam(mixed $parameter,
mixed $value [, int $data_type = PDO::PARAM_STR [, int
$length]])

PDO::PARAM_BOOL boolean
PDO::PARAM_NULL NULL
PDO::PARAM_INT integer
PDO::PARAM_STR string (default)

PDO::PARAM_INPUT_OUTPUT OR-bitwise with one of the
above to bind and INOUT parameter (only useful with stored
procedures). A length must follow.

 33

include/require quirks
● These statemens includes and evaluates the

specified file. Slower _once versions are available.

● Use require if you want a missing file to halt
processing of the page; include if you want your
script to continue regardless

● Path defined: absolute, relative: if an included script
contains another include with a relative path, note
this is only based off of the first script current working
directory, and not that of the included script

● No path is given: include_path will be used

The two constructs are identical in every way except how they
handle failure. Include produces a Warning while require results
in a Fatal Error.

An absolute pathname starts with a "/" on unix, and with a drive

letter and colon on Windows.

The PHP include_path configuration directive contains a list of

directories that PHP searches for files to include for which only

the file name, without any path, is specified . The format is like

the system's PATH environment variable: entries are column-

separated in Unix and semicolon-separated in Windows.

Using a . in the include path allows for relative includes as it means

the current directory. However, it is more efficient to explicitly

use include './file' than having PHP always check the current

directory for every include. Default value example:

.:/usr/share/pear

 34

Autoloading Classes

function __autoload($class_name) {
 require_once $class_name . '.php';
}

● The autoload function must be defined in main
scope in "\" namespace.

● To keep things simple, it is advisable to keep
source files in the filesystem in a directory tree
correspondent to that of namespaces.

Every time you want to use a new class in your PHP
project, first you need to include this class (using
include or require language construct, that’s right
this are not functions). However if you have
__autoload function defined, inclusion will handle
itself: the __autoload function is automatically
called in case you are trying to use a class/interface
which hasn't been defined yet. By calling this
function the scripting engine is given a last chance
to load the class before PHP fails with an error.

It is a good practice to create one PHP source file
per-class definition.

 35

PHP Namespaces
● Declaration: namespace MyWebapp; (that is \MyWebapp)

● Namespaces can nest into others:

namespace CompanyName\ProjectName\Library\Database;

● Before, to avoid name clashes, long prefixes were used:
CompanyName_ProjectName_Library_Database_ClassName

● Namespace aliasing allows to shorten long qualified names:

use CompanyName\ProjectName\Library\Database [as
Database];

$obj = new Database\ClassName();

● Single classes can also be aliased (not constants or functions):

use CompanyName\ProjectName\Library\Database\ClassName as C;

$obj = new C();

The NS definition must be the first command at the top of
the PHP file with no HTML or white space preceding it. If
it lacks, by default, all constants, class, and function
names are placed in the global or root NS (\).

PHP allows you to define a hierarchy of NSs so libraries
can be sub-divided - just like directories in a file system
group related files and allow different files to have the
same name, if they're not in the same directory.

NSs avoids name collitions between your and third-party or
internal PHP code.

NS aliasing (also called importing) is akin to symbolic links
in filesystems.

The same NS can be defined in multiple files; a single file
may define multiple NSs in sequence (only useful if you
want combine multiple PHP scripts into one) – NS
declarations cannot be nested. A code block can only
belong to one NS.

Declaration and Import names must be fully qualified, they
are not processed relative to the current namespace. The
leading \ is unnecessary.

 36

Three types of names

● Unqualified:
Database (namespace)

ClassName (class)

● Qualified:
Library\Database (namespace)

Database\Classname (class)

● Fully-qualified:
\CompanyName\ProjectName\Library\Database (namespace)

\CompanyName\ProjectName\Library\Database\ClassName
(class)

Namespace terminology (\ = namespace separator):

Unqualified: identifier without a \. They are resolved first in the current
namespace. If not found and the code is not global they are
searched in the global namespace, but only for constants and
functions, not class names (use \ClassName if you want to refer to a
global class). This rule exists to make it easier to use in
namespaced context the many constants and functions from the
traditional procedural PHP standard library that reside in the global
namespace, without the need to prefix them with a \. This way
existing non-namespaced code can be namespaced with little
modifications: only internal or non-namespaced user classes must
be fully qualified. If a namespace defines a constant or function with
the same name as a standard PHP one, the \ is mandatory.

Qualified: identifier with at least one \. These resolves starting from the
current namespace (which will be the global \ namespace if the code
is global).

Fully-qualified: identifier starting with the \ (except after operators
namespace and use). Unambiguos and thus resolved at compile
time. Often very long and only practical for one-off function calls or
object initialization. When you are making more than one call, use
alias.

 37

Data Filtering

● Validation: check if the data meets certain
qualifications: BOOLEAN, EMAIL, FLOAT,
INT, IP, REGEXP, URL

● Sanitization: alter the data, e.g. by removing
undesired characters, applying URL-encoding,
adding slashes, stripping tags, HTML-
escaping

mixed filter_input (int $type , string $variable_name [, int $filter =
FILTER_DEFAULT [, mixed $options]])

mixed filter_input_array (int $type [, mixed $definition])

Data coming from untrusted external sources, like
user supplied input coming from an HTML form,
should be filtered before use for both security and
robustness. There are two main types of filtering
(validation and sanitization) and they can be
applied both to the same data with many flags and
options available. In the few cases where they are
not enough, user-defined function to filter data can
be defined.

$type: one of INPUT_GET, INPUT_POST, INPUT_COOKIE,
INPUT_SERVER, INPUT_ENV...

$filter: filter to apply (a constant)
$options: associative array of options or bitwise

disjunction of flag.
$definition: $filter or array defining multiple values to

filter; key=$variable_name, value=$filter or $options

	Title
	PHP vs others
	PHP Manual
	PEAR
	Identifier names
	String literals
	Cookies
	Session Handling
	Session Variables
	Login
	Custom pages
	Logout
	Classes and Objects: con/destructors
	Inheritance
	Polymorphism
	Late Binding
	Fail-safe late binding
	Overloading methods?
	Trick to implement overloading
	Getting the name of a class
	Inspecting variables
	Slide 22
	The callback pseudo-type
	Slide 24
	Closures
	Type Hinting
	PHP Arrays
	Kludges for class constant arrays
	PHP Exception Handling
	PDO: PHP Data Objects
	PDO: prepared statements
	PDO: some param/value data types
	include/require quirks
	Slide 34
	PHP Namespaces
	Three types of names
	Data Filtering

